Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Fang Li, ${ }^{\text {a }}$ Ya-Qing Feng, ${ }^{\text {a }}{ }^{*}$ Jun-Peng Zhuang ${ }^{\text {b }}$ and Xiao-Fen Hu^{a}
${ }^{\text {a }}$ School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Science, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: Ixf7213@eyou.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.090$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-[(2,6-Dichlorophenyl)(hydroxyimino)-methyl]-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one

The title compound, $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$, was derived from the product of the intermolecular [3+2]-cycloaddition reaction of 2,6-dichlorobenzonitrile oxide and 1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one. The hydroxy group and the 2,6dichlorophenyl ring of the oxime are in a trans conformation and the $\mathrm{C}=\mathrm{N}-\mathrm{O}$ angle is 113.90 (15) \AA. Pairs of molecules form centrosymmetric $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded dimers, with an $\mathrm{O} \cdots \mathrm{N}$ distance of 2.821 (2) \AA. The pyrazole ring is nearly planar, with a mean deviation from the plane of 0.0246 (3) \AA and a dihedral angle between the pyrazole and the unsubstituted phenyl ring of $131.7(4)^{\circ}$.

Comment

1,3-Dipolar cycloadditions offer a convenient one-step route for the construction of a variety of complex five-membered heterocycles that are synthetically useful compounds (Caramella \& Grunanger, 1984). 1,3-Dipolar cycloadditions of nitrile oxide are well documented and provide efficient methods for the synthesis of 2-isoxazolines, which are easily converted to amino ketones, oxo alcohols and a number of natural products by using different reduction reagents (Huisgen, 1984). Furthermore, 1,3-dipolar cycloaddition reactions can be used to synthesize bicyclic compounds, which are interesting structures for organic chemists because of their different practical applications. The intermolecular [3+2]-cycloaddition of 2,6-dichlorobenzonitrile oxide and 1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one gave the bicyclic compound 6,6a-dimethyl-3,5-diphenyl-3a,5,6,6a-tetrahydrocyclopenta $[d]$ isoxazol-4-one (CPO). In this paper, the structure of 4-[(2,6-dichlorophenyl)(hydroxyimino)methyl]-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one, (I), derived from CPO (see Experimental), is reported.

(I)

The molecular structure of (I) is illustrated in Fig. 1. The X-ray structure reveals that the hydroxy group and 2,6-dichlorophenyl ring of the oxime are in a trans configuration. Atoms C13/C12/C8/N3 are nearly coplanar, the mean deviation from the plane being 0.0051 (3) \AA. Atom O 2 is 0.0819 (3) \AA from the $\mathrm{C} 13 / \mathrm{C} 12 / \mathrm{C} 8 / \mathrm{N} 3$ mean plane and the $\mathrm{C} 12-\mathrm{N} 3-\mathrm{O} 2$ angle is $113.90(15)^{\circ}$. The bond length $\mathrm{C} 12-$

Received 17 January 2003 Accepted 28 January 2003 Online 7 February 2003

Figure 1
A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

The crystal structure of (I), viewed along the a axis.
N3, which is 1.276 (2) \AA, is similar to the value of 1.274 (2) \AA determined in 4-(antipyrin-4-yliminomethyl)benzoic acid [(II); Zhang et al., 2002] and corresponds to a double bond between C 12 and N3. The dihedral angle between $\mathrm{C} 13 / \mathrm{C} 12 /$ $\mathrm{C} 8 / \mathrm{N} 3$ and the 2,6 -dichlorophenyl ring $(\mathrm{C} 13-\mathrm{C} 18)$ is 108.9 (2) ${ }^{\circ}$ and that between $\mathrm{C} 13 / \mathrm{C} 12 / \mathrm{C} 8 / \mathrm{N} 3$ and the pyrazole ring ($\mathrm{C} 8 / \mathrm{C} 7 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 9$) is $138.8(3)^{\circ}$. The pyrazole ring is nearly planar, with a mean deviation from the plane of 0.0246 (3) \AA. The $\mathrm{C} 7-\mathrm{O} 1$ and $\mathrm{N} 1-\mathrm{N} 2$ bond lengths are 1.218 (2) and 1.402 (2) \AA and $\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$ angles are $104.95(15)$ and $108.85(14)^{\circ}$, respectively; these are comparable with values of $1.248(2) / 1.391(2) \AA$ and 105.13 (18)/108.90(16) ${ }^{\circ}$ reported in the literature (Zhang et al., 2002). The $\mathrm{C} 8-\mathrm{C} 9$ bond length and $\mathrm{C} 9-\mathrm{N} 2-\mathrm{N} 1$ angle are 1.362 (3) A and $107.48(14)^{\circ}$, respectively, which compare well with the values of 1.357 (2) \AA and 106.2 (1) $)^{\circ}$ in the literature (Lui et al., 2002). The dihedral angle between the pyrazole ring ($\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{N} 2 / \mathrm{N} 1$) and the benzene ring (C1-C6) is 131.7 (4) ${ }^{\circ}$, but the corresponding value in (II) is 70.25 (4) ${ }^{\circ}$ (Zhang et al., 2002). The $\mathrm{C}-\mathrm{Cl}$ bond lengths in the 2,6 -dichlorophenyl ring are 1.727 (2) and 1.729 (2) \AA, which are in good agreement with the values reported in the literature (Busetti et al., 1980;

Sutherland \& Ali-Adib, 1987). Pairs of molecules of (I) form centrosymmetric $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded dimers, where the $\mathrm{O} 2 \cdots \mathrm{~N} 3^{\mathrm{i}}$ distance is 2.821 (2) $\AA, \mathrm{H} 2 \cdots \mathrm{~N} 3^{\mathrm{i}}$ is $2.11 \AA$, and the $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3^{\mathrm{i}}$ angle is 146° [symmetry code: (i) $1-x,-y$, $1-z]$.

Experimental

A mixture of 2,6 -dichlorobenzonitrile oxide (2 mmol) and 1,5 -di-methyl-2-phenyl-1,2-dihydropyrazol-3-one (2 mmol) in dry benzene $(30 \mathrm{ml})$ was heated under reflux for 6 h . After evaporation of the solvent, the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate $=5: 1$) to give the product CPO. The structure of CPO was determined by ${ }^{1} \mathrm{H}$ NMR. CPO was unstable and underwent a decomposition reaction in solution, during recrystallization, to give crystals of (I). A crystal suitable for X-ray analysis was obtained by slow evaporation of a solution of CPO in chloroform over a period of 30 d. M.p. $475-476$ K; IR (KBr): 3452 (OH), 1701 $(\mathrm{C}=\mathrm{O}), 1595,1578(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m. $):$ $1.84(3 \mathrm{H}, s), 2.74(3 \mathrm{H}, s), 10.39(1 \mathrm{H}, b), 7.21-7.58(8 \mathrm{H}, m)$.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=376.23$
Triclinic, $P \overline{1}$
$a=7.804$ (2) £
$b=9.123(4) \AA$
$c=13.523(5) \AA$
$\alpha=74.313(8)^{\circ}$
$\beta=78.473(8)^{\circ}$
$\gamma=74.265(8)^{\circ}$
$V=883.7$ (6) \AA^{3}

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.414 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 985 reflections
$\theta=2.5-26.4^{\circ}$
$\mu=0.38 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colorless
$0.34 \times 0.20 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.746, T_{\max }=0.940$
6966 measured reflections
3028 independent reflections
2537 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-6 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.090$
$S=1.02$
3028 reflections
230 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.084 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL } \\
& \text { Extinction coefficient: } 0.008(2)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cl} 1-\mathrm{C} 14$	$1.729(2)$	$\mathrm{N} 3-\mathrm{C} 12$	$1.276(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.402(2)$	$\mathrm{N} 3-\mathrm{O} 2$	$1.400(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.423(2)$	$\mathrm{O} 1-\mathrm{C} 7$	$1.218(2)$
$\mathrm{N} 2-\mathrm{C} 9$	$1.360(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.362(3)$
$\mathrm{N} 2-\mathrm{C} 11$	$1.458(3)$		
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7$	$108.85(14)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$104.95(15)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{N} 1$	$107.48(14)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 12$	$129.27(17)$
$\mathrm{C} 12-\mathrm{N} 3-\mathrm{O} 2$	$113.90(15)$		

All H atoms were included in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ (for phenyl), $0.98 \AA$ (for methyl) and $0.82 \AA$ for $\mathrm{O}-\mathrm{H}$. They were included in the refinement in riding-motion approximation, with $U_{\text {iso }}=1.2 U_{\text {eq }}\left(1.5 U_{\text {eq }}\right.$ for methyl and $\left.\mathrm{O}-\mathrm{H}\right)$ of the carrier atom.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

References

Busetti, V., Valle, G., Zanotti, G. \& Galiazzo, G. (1980). Acta Cryst. B36, $894-$ 897.

Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Caramella, P. \& Grunanger, P. (1984). In 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.
Huisgen, R. (1984). In 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 154-176. New York: Wiley.

Lui, B., Hu, R.-X., Chen, Z.-F., Chen, X.-B. \& Liang, H. (2002). Chin. J. Struct. Chem. 21, 414-419.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sutherland, H. H. \& Ali-Adib, Z. (1987). Acta Cryst. C43, 1406-1407.
Zhang, Y., Li, Y., Tao, H. \& Zhu, L. (2002). Acta Cryst. E58, o24-o26.

